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The evolution of three-dimensional disturbances in an incompressible three- 
dimensional stagnation-point flow in an inviscid fluid is investigated. Since it is not 
possible to apply classical normal-mode analysis to the disturbance equations for the 
fully three-dimensional stagnation-point flow to obtain solutions, an initial-value 
problem is solved instead. The evolution of the disturbances provides the necessary 
information to determine stability and indeed the complete transient as well. It is found 
that when considering the disturbance energy, the planar stagnation-point flow, which 
is independent of one of the transverse coordinates, represents a neutrally stable flow 
whereas the fully three-dimensional flow is either stable or unstable, depending on 
whether the flow is away from or towards the stagnation point in the transverse 
direction that is neglected in the planar stagnation point. 

1. Introduction 
Previous analytical work investigating the stability of planar stagnation-point flows 

has concentrated on the mathematical simplification provided by classical mode 
analysis of streamwise disturbances. Wilson & Gladwell (1978) have shown that 
incompressible planar stagnation flow is always stable to threeidimensional normal- 
mode self-similar disturbances that decay exponentially outside the viscous boundary 
layer. Lyell & Huerre (1985) re-examined the planar stagnation flow problem by using 
the same class of disturbances and verified the results of Wilson & Gladwell. They also 
characterized the other stable eigenvalue branches by showing that, after the initial 
branch found by Wilson & Gladwell, the other branches come in pairs. In addition, by 
a nonlinear analysis using a Galerkin method, Lyell & Huerre indicated that this same 
flow is unstable for disturbances of sufficiently high amplitude. On the other hand, a 
numerical study by Spalart (1989) found no such instability, suggesting that this was 
not the case. Brattkus & Davis (1991) showed that the normal-mode self-similar 
disturbances were the least stable of the class of disturbances that have a power-like 
behaviour in the downstream coordinate. 

Lasseigne & Jackson (1992) allowed for density variations induced by a temperature 
difference between the free stream and the plate and determined that the stagnation 
flow remained stable to small streamwise disturbances regardless of the plate 
temperature. The effect of cooling the plate was to decrease the decay rate (less stable) 
of the small-wavelength disturbances while increasing the decay rate (more stable) of 
the moderate wavelengths. Again, only three-dimensional normal-mode self-similar 
disturbances that decay exponentially outside the viscous boundary layer were 
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considered. Studies dealing with the swept attachment line also concentrated on 
streamwise normal-mode linear disturbances. Hall, Malik & Poll (1984) determined 
that a region of instability (in frequency-wavenumber space) associated with increasing 
crossflow exists. In independent investigations Kazakov (1991) and Lasseigne, Jackson 
& Hu (1992) determined the effects of surface temperature variations on this region of 
instability; the latter investigation also allowed for the effects of suction or blowing at 
the surface. 

It is not possible to analyse the stability of the fully three-dimensional stagnation- 
point flow using normal-mode streamwise disturbances since the disturbance equations 
do not admit this class of disturbances as an eigenvalue problem. Therefore, the 
approach taken in this investigation is different than that of previous investigations. A 
more general initial value problem is solved using the methodology developed in 
Criminale & Drazin (1990) and has its origins in the work of Kelvin (1887) and Orr 
(1907a, b). The disturbances are taken to be initially bounded in all directions and the 
evolution of initial conditions is determined analytically and in closed form. By 
concentrating on the mean flow subject to disturbances in an inviscid fluid, the fully 
three-dimensional stagnation-point flow can be solved with the planar stagnation- 
point flow as a special case. 

The method of analysis utilizes a moving coordinate transformation that allows easy 
integration (in time) of the individual vorticity components. Then, the double Fourier 
transform in the new transverse coordinates is used to reduce the mathematical 
problem to the solution of ordinary differential equations in which time appears strictly 
as a parameter. Thus, a completely analytical solution is found to the initial value 
problem describing the evolution of three-dimensional disturbances in three- 
dimensional stagnation-point flow in an inviscid fluid. The time evolution of a single 
Fourier mode in which the disturbance is periodic in the transverse directions is 
investigated in detail as well as the evolution of an initially localized disturbance. In 
both cases, the evolution of the total energy of the disturbance is used to illustrate the 
importance of the transient. Kelvin (1887) and Orr (1907a, b) have shown for different 
flow configurations that there can be growth in the perturbation energy even when the 
classical mode analysis shows that the flow is stable for long times. 

Farrell(l989) applied this approach to two-dimensional disturbances within a two- 
dimensional counterflow as a good approximation to the local flow in regions of 
confluence and diffluence. It was determined that plane wave disturbances with 
dependence in the transverse coordinate and independent of the other coordinate have 
energy that grows exponentially in time. Plane wave disturbances with dependence in 
both coordinates experience an initial exponential growth, but eventually decay as time 
progresses. Disturbances with finite wave trains that were not spatially symmetric were 
shown to be stable but these disturbances also experienced an initial transient growth 
in energy with the energy asymptotically approaching a constant amplitude. Symmetric 
finite-wave-train disturbances were shown to not experience the initial transient growth 
and to have energy constant in time. This was seen to occur in regions of both 
confluence and difluence. 

The governing equations for the three-dimensional stagnation-point flow, the 
moving coordinate transformation and the linear disturbance equations are presented 
with the disturbance equations solved by the use of Fourier transforms in the transverse 
coordinates. Selected results for the evolution of a single Fourier mode are given in 53 
and, in $4, results pertaining to the time evolution of a finite wave train described by 
an initially Gaussian profile are presented. In 0 5 ,  a constant-pressure boundary 
condition is considered as an alternative to the zero normal velocity condition. Section 
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6 contains a discussion on the effects of background rotation and particle paths. 
Conclusions are given in $7. 

2. Problem statement and basic equations 

dimensional stagnation-point flow. The basic flow is given non-dimensionally by 
The problem under investigation is that of linearized disturbances in a three- 

u=x, V = - ( l + h ) y ,  W = h z ,  (1) 
where A is a measure of three-dimensionality. For A = 0 the flow is a two-dimensional 
stagnation-point flow; for A = 1 the flow is axisymmetric; for -0.4294 < h < 0 the 
flow corresponds to two symmetrically displaced protuberances (Davey 1961), as 
displayed in figure 1. For h < 0, it is important to observe that the flow is toward the 
stagnation point in the z-direction and away from the stagnation point in the x- 
direction. In addition, Davey has shown that separation occurs at h = - 0.4294, 
reversed flow exists for - 1 d h < 0.4294, and no solutions are possible for h < - 1. 

The non-dimensional linearized equations for small disturbances are written as 

u,+v,+w, = 0, (2 a)  
u,+xu,-(l+h)yu,+hzu,+u = -p,, (2 b) 

(2 c> 
(2 d) 

u,+xv,-(I +h)yv,+hzv,-(l +h)v = -py, 
w,+xw,-(l +h)yw,+hzw,+hw = -p, ,  

where u, v ,  w and p are the velocity and pressure perturbations, respectively. The 
appropriate boundary conditions require that all disturbance quantities vanish as 
y + co and the normal velocity v is zero on the wall. In addition, the initial conditions 
consistent with the boundary conditions must be supplied. 

The above equations can be recast in terms of the vorticity components w,, wy, w, in 
the x, y ,  z directions : 

where D/Dt is the linearized material derivative defined by 

In general, only two vorticity components can be specified at time t = 0; the third 
component is found by appealing to the fact that vorticity must be solenoidal, given 
by 

In this study, the initial profiles for the vorticity components w, and w, are specified, 
and ( 5 )  is used to determine wy. Once the vorticity has been determined from (3), the 
v velocity component is found by solving 

subject to appropriate boundary conditions, where V2 is the three-dimensional Laplace 
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a>o 
FIGURE 1 .  Schematic of a cross-section of the three-dimensional stagnation-point flow. Shown are 

the (w ,  v)-velocity components in the (z ,  y)-plane. 

operator. The other velocity components are determined by appealing to the vorticity 
relations together with the continuity equation, yielding 

where V$ is the two-dimensional Laplace operator in the (x, z)-plane. 
By following Criminale & Drazin (1990), an analytical solution is readily obtained 

if a change from an Eulerian to a moving coordinate system is made. The moving- 
coordinate transformation 

[ = xe-t, y = ~ e ( l + ~ ) t ,  { = Ze-ht, T =  t (9) 

is chosen so that the system of equations (3) have coefficients that are functions of time 
only and the material derivative (4) becomes 

The notable feature of this transformation is that the partial differential equations for 
the individual vorticity components (3) can then be immediately integrated in time and 
the solutions are 

w, = w! eT, w Y Y  = w0 e-(l+*) T, w, = w,“ ehT, (1 1) 
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where the superscript 0 denotes the specified values at T = 0. Once the initial values w! 
and w," have been found, the initial value of w; is determined from the conservation of 
vorticity (equation (5)) .  The equation for the u velocity component in the moving 
coordinates is 

where A is the Laplace operator in the moving coordinates, namely 

It is noted that the time dependence in (12) appears as a parameter only and hence 
finding a solution to (12) is essentially a spatial problem. The equations for the other 
two velocity components in the moving coordinate system are 

where 

is the two-dimensional Laplace operator in the moving system. 
It is now assumed that Fourier transforms may be taken in the t- and c-directions, 

which implies that the disturbances are bounded in these directions. The double 
Fourier transform is defined by 

ti(., 7,Y '  T )  = JJY" La' 7, <> T )  ei(a5+r0 dtd5, (17) 

etc. for 0, $, f i ,  4 with the inversion given by 

The transforms of the relevant equations are 

(23) &,2 = a2 e-2T +Y2 e-2AT. with 

The equation for 0 is a second-order ordinary differential equation in 7 with time- 
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dependent coefficients, and since d2 is just the Fourier transform of A2, the velocity 
components t and 14 are determined directly from the algebraic relations provided by 
transforming (14) and (1 5). 

The evolution of a single Fourier mode can be studied by choosing the initial 
conditions for the vorticity components w: and w i  to be 

(w!, w i )  = (fix, 52,) e-i(anc+yoo8(q -yo) (24) 

(25) 
The initial value for the last vorticity component is found by transforming (20) and 
integrating in the 7-direction: 

(26) 
where H(7) is the step function. The constant of integration has been chosen so that 
all of the velocity components vanish as 7 +. 00. 

With the vorticity components known, the differential equation for 6 is integrated, 
and 

since ( x , y , z )  = (&y, () at T =  0. In Fourier space, 

(q, 49 = (Qx, 52,) - a,) S(Y -Yo> S(7 -Yo>. 

6; = (iaQ, + iyQ,) 6(a - .o> S(Y - Yo) 1m7 -Yo) - 11, 

,(1+A) T 

{iao, -iyQ, e-(1+3A) T }  S(a - a,) S(y - yo) " 6  v=- 
2ii 

x {exp [ - ii e-(l+A) 17 -yoI] - exp [ - a e-(l+h) (7 +YO)l), (27) 
where & is as defined earlier. The solution decays as 3 + co and is zero at the wall. Once 
the transform is inverted, the velocity component is given by 

where 

The u- and w-components are determined directly from the earlier equations and, upon 
inverting the transforms, these components are found to be 
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3. Single mode: infinite wave train 
In this section we present selected results for the single-mode solutions given above 

for u, v, and w. We first note that the solutions are a linear combination of Q, and Q,. 
Therefore, there exist two modes, defined as follows : 

Mode I :  Q, = 0, 52, = 1;  
Mode 11: Q,= 1, o,=o. 
The results for Mode I are shown in figure 2 for three values of the wavenumber in 

the z-direction (yo = 0, 0.1, and 1 .O) and a single value of the wavenumber in the x- 
direction (a, = 1.0). Plotted in this figure is the maximum amplitude of the velocity 
components Iu~,,,, Ivlmax, and Jwlmaz as a function of time. The maximum in the u- and 
w-velocities are at the wall, while the maximum in the v-velocity is in the interior for 
all times since it is required that v vanish at the wall. In each part of the figure, four 
values of the three-dimensionality constant were chosen: axisymmetric flow, h = 1 
(shown in the figures as a small-dashed curve); h = 0.5; planar stagnation-point flow, 
h = 0 (shown in the figures as a large-dashed curve); and h = -0.2. 

Included in this figure are the results for the special cases of two-dimensional 
disturbances in a two-dimensional flow (yo = 0, h = 0), two-dimensional disturbances 
in a three-dimensional flow (yo = 0, h + 0), and three-dimensional disturbances in a 
two-dimensional flow (yo + 0, h = 0). 

As seen from the figure, all three components of the flow exhibit exponential decay 
in the long-time solution for the response of this mode. The results for the u-velocity 
show that the decay rate is independent of the variable h and of the wavenumber in the 
z-direction. Since the analytic solution for the velocities is known, this information can 
be found by determining the behaviour of (30) as T+ co and is 

where the first term of (30) is dominant when h < 1, and there is a balance between the 
first and second terms for the axisymmetric case h = 1 that does not, however, change 
the limit. For the long-time behaviour of the v-component of the velocity the maximum 
must be determined. The maximum is found to always occur at 7 = yo so that 

with the axisymmetric case again being a special limit that does affect the amplitude in 
the above equation but not the decay rate. The asymptotic behaviour for the w- 
component of the velocity is also determined analytically. From (31) it is found that 

The dependence of the decay rate of the v- and w-components on the three- 
dimensionality parameter h is clearly seen in figure 2. 

Although the above analytic forms appear to be relatively simple, the use of the 
transformed variables Q 6 and 7 tend to hide some rather significant changes in the 
spatial structure of the disturbances. For h > 0 there is a stretching of the initial 
Fourier-mode form in both the x-direction and the z-direction. For the axisymmetric 
case, this stretching occurs at an equal rate in both directions. For the planar 
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FIGURE 2. Maximum amplitude of the velocity components as a function of time for Mode I 
disturbances for three values of the z-wavenumber. In each part, four values of the three- 
dimensionality constant are chosen: axisymmetric flow, h = 1 (shown in the figures as a small-dashed 
curve); h = 0.5; planar stagnation-point flow, h = 0 (shown in the figures as a large-dashed curve); 
and h = -0.2. 

stagnation-point flow h = 0 there is no stretching of the disturbance in the z-direction, 
and for h < 0 where the mean flow is towards the stagnation point in the z-direction, 
there is a contraction of the initial Fourier-mode form in the z-direction. In the y- 
direction, it is noted that although the maximum in u-velocity is at a fixed value of 7, 
this implies that this maximum approaches the wall exponentially fast when the 
problem is converted to the physical spatial variables, that is the inverse of (9). 

Although the long-time behaviour of the disturbances is of course very important, 
equally important is the transient evolution since it is possible for there to be significant 
initial growth (or perhaps a long-time persistence) of the disturbance quantities before 
the inevitable exponential decay. By examining the results of figure 2, it is seen that the 
initial response to a Mode I disturbance is typically a linear decay in time. The initial 
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FIGURE 3. As figure 2 but for Mode I1 disturbances. 

linear decay rate depends on the value of the three-dimensionality parameter h with 
h < 0 decaying at the slowest rate. The h-dependence of this initial decay rate is 
strongest for smaller wavenumbers in the z-direction. 

The results for the single-mode response to a Mode I1 disturbance are shown in 
figure 3.  A significant difference from the Mode I results is immediately noticeable. 
Analytically the long-time limits are given by 

and (37) 

as T+ a. It is seen from figure 3 that the u- and v-components of velocity decay 
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FIGURE 4. Normalized energy E as a function of time. In each part, four values of the three- 
dimensionality constant are chosen: axisymmetric flow, h = 1 (shown in the figures as a small-dashed 
curve); planar stagnation-point flow, h = 0 ;  h = -5 (shown in the figures as a large-dashed curve); 
and h = -0.4. 

exponentially for all h while the w-component of velocity only decays when the three- 
dimensionality parameter h is greater than zero. This value of h corresponds to a 
stretching of the original disturbance in the z-direction. However, for the planar 
stagnation-point flow where h = 0 the w-component approaches a constant in- 
dependent of the initial wavenumber in the x- and z-directions. For the case where 
there is mean flow towards the stagnation point along the z-direction ( A  < 0), the w- 
component grows exponentially. It is seen that the initial behaviour of the u- and u- 
components also reflects this differing behaviour for the planar stagnation-point flow 
and the h < 0 case. It is also true that there is initially linear growth of these 
components. As in the Mode I case, the dependence of the behaviour for early time on 
the three-dimensionality parameter is strongest at smaller wavenumbers in the z- 
direction. 
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The results presented in figures 2 and 3 give the maximum values of the velocities, 
but considering the severe contraction of the disturbances in the y-direction, as 
evidenced by the movement of the maximum in the v-velocity toward the wall at an 
exponentially fast rate, it is perhaps more useful to look at the growth or decay of the 
energy of the disturbances. For the single-Fourier-mode results presented in this 
section, it is necessary to consider the energy per period in the [- and <-directions, or 
equivalently the energy per period in the x- and z-directions. Because of the stretching 
in the x-direction and the stretching or contraction (depending on the sign of A )  in the 
z-direction, these results do not readily lend themselves to direct physical in- 
terpretation; however, they do help point out the effect that the contraction has in the 
vertical direction y. Shown in figure 4 as a function of time is the quantity E defined 
by 

E(t) = - [lul2 + 1 ~ 1 ~  + Iwl2] dy, (38) : Jom 
where u, v, and w are given by (28), (30), and (31). Each graph was normalized by the 
value at time t = 0. The amplitudes Qz and Q, are equal in the mixed-mode results. In 
each part of the figure, four values of the three-dimensionality constant were chosen : 
axisymmetric flow, h = 1 (shown in the figures as a small-dashed curve); planar 
stagnation-point flow, h = 0; h = -f (shown in the figures as a large-dashed curve); 
and A ;  = -0.4. From these figures, Mode I1 is seen to represent disturbances that may 
grow in energy as it also represented disturbances with growth in the maximum values 
of the velocities. However, it is noted that although the maximum in the velocities can 
grow for any h < 0, the energy per period grows only for h < - f .  This phenomenon 
is directly related to the contraction in the y-direction. Very little dependence on the 
wavenumber in the z-direction can be detected, which is consistent with the results of 
figures 2 and 3. The energy of Mode I is dominated by the u- and u-velocities, which 
show little dependence on yo, and the Mode I1 energy is dominated by the w-velocity, 
which also shows little dependence on yo. 

4. Finite wave packet 
In the previous section, the results for an initial disturbance that consisted of a single 

Fourier mode were presented. This disturbance has an infinite spatial profile in the 
(x, 2)-plane. Considering the distortions in the x- and z-directions introduced by the 
transformed variables, there is considerable doubt as to the proper interpretation of the 
single-mode results. To resolve this difficulty in the analysis, an initial disturbance that 
is localized in space is chosen. The initial vorticity profile is taken as a Gaussian. The 
disturbance is initially symmetric in the (x, z)-plane and, since the inviscid problem is 
being investigated, a Gaussian profile in the y-direction is also chosen and all boundary 
conditions can still be satisfied. 

The analysis proceeds by replacing (24) with 

where the constant is chosen such that the integral of the square of the vorticity over 
the domain is a constant for each choice of cr and /3. 
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The above initial conditions can be substituted directly into (19) and (20) which can 
then be solved for 6 and 4;, or the previous results for a delta-function initial condition 
in the y-direction can be integrated over the dummy variable yo. Either way, the 
transform of the vorticity w i  and the u-component of velocity are given by 

and 

+ 2 exp [ - & e-(l+n) '71 erf (& e- (42) 

The transforms of the u- and w-components are found directly from (21) and (22) and 
all transforms can be inverted using (I 8). The long-time behaviour of G at the wall for 

as T+co which shows that the transform grows exponentially for h negative, 
consistent with the results of the single mode. 

In order to examine the true behaviour of the evolution to this initially localized 
disturbance, the energy as a function of time is computed. The energy in terms of the 
unstretched variables is 

E( T )  = 2 1: [l:m [u2 + v2 + w2] dx dz dy, (44) 

which can also be given in terms of integrals over the Fourier-transform quantities in 
the stretched variables as 

where (46) 
The normalized energy of the response to a Mode I1 Gaussian profile with ,5 = 1 .O and 
u = 0.5 is shown in figure 5 for eight values of the three-dimensionality parameter h 
ranging from h = 1 (the axisymmetric case) to h = -0.4 (near separation). A number 
of interesting features are noticeable. First, for the planar stagnation-point flow 
( A  = 0), the energy approaches a constant value approximately three times the initial 
value. This is in agreement with the results tracking the maximum in the velocities. The 
mean flow produces a contraction of the disturbance in the y-direction, initially 
increasing the magnitude of the w-velocity at the wall and initially increasing the energy 
of the disturbance. However, a balance develops between the continued contraction in 
the y-direction and the expansion of the flow in the x-direction thereby leading to the 

@(a, y, 7, T )  = ti2 + iY+ 14'. 
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a=o 

T 

FIGURE 5. Normalized energy of the response to a Mode I1 Gaussian profile with p = 1.0 and 
v = 0.5 as a function of time for various values of the three-dimensionality parameter A. 

situation where the energy approaches a constant. This behaviour of the disturbance 
energy for the two-dimensional planar counter-flow was also seen by Farrell (1989). 
The purpose of this study is to determine the effects of the three-dimensionality of the 
mean flow. When these three-dimensional effects are considered ( A  + 0), it is seen that 
the planar stagnation-point flow represents a special case. For h slightly positive, there 
is again an initial transient growth in energy. The extra expansion of the flow in the z- 
direction means that the balance that developed for the planar stagnation-point flow 
does not develop and the energy of the disturbance eventually decays to zero. For h 
sufficiently large and positive there is no initial transient growth, implying that the 
expansion of the flow in the z-direction is sufficient to prevent the initial increase in 
disturbance energy. From figure 5 ,  it is seen that for the special case of axisymmetric 
flow ( A  = I) ,  the energy undergoes an immediate exponential decay. For A less than 
zero, an unstable situation develops, and the energy of the disturbance continually 
increases at an exponential rate owing to the contraction in both the y- and z-directions 
which is not balanced by the expansion in the x-direction. 

It is also interesting to examine the behaviour of the vorticity components, which are 
given by (1 1) in the transformed coordinates. In the physical coordinates, the vorticity 
field is undergoing a contraction in the y-direction, an expansion in the x-direction and 
an expansion (for h > 0) or a contraction (for h < 0) in the z-direction. The 
exponential time factors in (1 1) indicate that for a Mode I1 disturbance, vorticity is 
transferred from the y-component to the x-component while the transfer of vorticity 
between the y- and z-components for a Mode I disturbance depends on the sign of A. 
By considering the response of a Mode I1 initial disturbance, it is seen that in the 
neutrally stable case ( A  = 0) the decay rate of the y-vorticity component is equal to the 
growth rate of the x-vorticity component. For the stable case ( A  > 0), the decay rate 
of the y-vorticity component is greater than the growth rate of the x-vorticity 
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component; whereas, for the unstable case ( A  < 0), the decay rate of the y-vorticity 
component is less than the growth rate of the x-vorticity component. For the Mode I 
disturbance, either both components are decaying ( A  < 0), or the decay rate of the y- 
vorticity component is always greater than the growth rate of the z-vorticity 
component. Perhaps this is an indication of why it is the Mode I1 disturbances that 
experience unstable energy growth rather than those of Mode I. 

5.  Constant-pressure boundary condition 
One problem of interest in geophysical fluid dynamics is the case where there is a 

constant-pressure surface in lieu of a condition on the velocity. Such a problem has 
been examined by Eady (1949), for example, where plane Couette flow is 
mathematically equivalent when the constant-pressure surface is used. Consider p = 0 
at y = 0 rather than the u-velocity. Of course the surface y = 0 can no longer be 
thought of as a solid wall. To derive an equation which governs the time evolution of 
the pressure, the momentum equations (2b) and (2c) can be combined with the 
continuity equation (2a) in the (5, y, <, T) coordinate system to get 

where it is immediately seen that the axisymmetric case A = 1 is a special case. In 
keeping with the previous analysis, the pressure equation is first transformed into 
Fourier space and then zi is eliminated by using (21), yielding 

If the initial conditions are considered to be given by (24) for this problem so that only 
a single Fourier mode is investigated, then 4; is given by (26), while (19) can be 
integrated to find 8, yielding 

8 = A,( T) exp [ - d e-(l+A' '17 - y,l] + A,( T )  exp [ - d e-(l+') '(7 -yo)], (49) 
e ( l + A )  T 

where A, (T)  = ___ (ia0, e ~ ( ~ + ~ )  - iyQ, e-(1+3A) '} 6(a - a,) 8(y - y 0 '  ) (50) 2d 

The determination of A l ( T )  satisfies all of the conditions at 7 = y o  and it is left to 
impose the condition on the pressure at 7 = 0 in order to determine the remaining 
unknown function A,( T).  Equation (48) provides the necessary information in 
determining A,, but it is convenient to work with an alternative dependent variable 
defined by 

I). (51) - A ,  exp [dy,  e-(l+A) ' a6 
a7 

B( T )  = e(1+3A) ' - (0, T )  = di e2AT(A1 exp [ - dy,  e-(l+A) 

The equation for B(T) is then 

where i2 = ( i d ,  + iyQ,) ~ ( a  - a,) ~ ( y  - yo). (53)  
It is helpful to find the long-time solution in order to determine the effects of the 
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three-dimensionality parameter A. Since Mode I1 (Q, = 1, fz, = 0) is the more 
interesting initial condition, the rest of the analysis is restricted to this case with h < 1 .  
The long-time solution for B is determined directly from (52) or 

(54) 
a B(T)  = B, a - (y  - a e&-') 
Y 

as T+ co, where the proportionality to a is explicitly given and the constant B, can 
be found numerically. The behaviour of A ,  is determined directly from (50), and A ,  
from (51). These limits are 

(55) 

(56)  

A,(T) = ---e -AT S(a-a,)S(y-y,), 
2 IYI 

A ( T )  = -- -- aB, e-ATS(a-ao) S(y- yo), 
IYI i ( Y  2 1 

as T+ co. The long-time behaviour of the velocities Z i ,  0, ti, is found through (24), (49) 
and (22), indicating 

(57) 

(58) 

(59) 

a Zi(0, T) = 7 (y - aB,) e-TS(a - a,) S(y - yo), 

d(0, T )  = - - (y - aB,) e-ATS(a - ao) S(y - yo), 

G(0, T )  = --B,e-ATTG(a-ao)6(y-yo), 

as T+ co. It is seen that, for the boundary condition p = 0 on the surface y = 0, the 
velocity components d and G of Mode I1 are exponentially growing when the three- 
dimensionality parameter h is negative. 

Y 
i 

IYI 

a 
Y 

6. Effects of background rotation; particle paths 
The expression used for the basic velocity and given by (1) can be modified to include 

effects due to background rotation (strain). Specifically, if 52; is the constant 
dimensional rate of rotation, then 

U=x+Q,z ,  V = - ( I + h ) y ,  W=hz-O,x (6 )  
becomes the new non-dimensional representation. The process of shifting to a moving 
coordinate system and solving for the perturbations as previously done can likewise be 
accomplished here but with a noticeable increase in complexity. For example, the 
fundamental vorticity equations (3) used for solving the initial-value problem are no 
longer uncoupled and the net effect is a higher-order differential system. Thus, the 
dynamics is altered to some degree. In particular, temporal oscillations become 
possible but the overall stability conclusions remain. These points can be illustrated by 
examining the paths of the material particles in the basic flow. 

The Cartesian components for any particle in a Lagrangian frame can be written 
using (60) as 

dx dz 
d T  d T  d T  - = u= x+Qoz,  - dy - - v =  - ( l + h ) y ,  - = w = hz-Q,x. (61a-c) 
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By assuming x = x,, JI = yo  and z = zo at time T = 0, the solutions for (61 a,  b, c) are 

3 ( 6 2 4  b) - ( l + A )  T x = x,erT, y = y,e 

with CT = 
2 (1 

Oscillatory solutions are possible if 52, > +(l -A) .  In general, particles will move 
arbitrarily far from any initial position. 

Two interesting limits of (62a, b, c) are when 52, = 0 or h = 1 ; h can never be very 
negative and therefore a change in the system behaviour using this parameter is not 
possible. In the first instance, 52, = 0, then 

x = x, eT, y = y o  @+A) T, z = z ,  eAT. (64) 
The novel feature of (65) is that these results are identical to those of (1 1) for the 
vorticity, where x,y,z are replaced by wz,wy,wz. In short, this is a unique situation 
where, for a three-dimensional flow, the particle paths are synonymous with vortex 
lines. Extending this argument to the 52, =k 0 case can be made by conjecture since the 
vorticity has not been determined under these circumstances. Thus, there is little 
likelihood that the instability predictions for the non-rotating case can be changed by 
a finite 52,. When h = 1, the basic flow is axisymmetric and CT = 1 + iQ,,. indicating that 
background rotation acts as a spring force and therefore oscillations in time result. 

7. Conclusions 
We have investigated the evolution of three-dimensional disturbances in a fully 

three-dimensional stagnation-point in an inviscid fluid. It has been shown that the 
planar stagnation-point flow is a special case in which the disturbance energy 
approaches a constant for long time. If the flow in the second transverse coordinate is 
away from the stagnation point then the flow expands in the transverse direction such 
that the disturbance energy decays after an initial transient growth. As the limiting case 
of axisymmetric flow is approached, the disturbance energy is found to decay without 
an initial transient growth. For flow towards the stagnation point in the second 
transverse direction, it is found that the disturbance energy may grow exponentially, 
thus indicating an unstable flow configuration. These results were found by determining 
a closed-form solution to the initial value problem even though a classical mode 
analysis was not possible for the fully three-dimensional flow. 

Because of the inviscid assumption, the results for the planar stagnation-point flow 
cannot be compared directly with previous work but the method used here can be 
extended (with considerably more mathematical complexity) to the study of the 
inviscid mean flow subject to viscous linear disturbances. These results can be 
compared with some of the previous work. However, any results for this problem can 
only be suggestive in view of the fact that the basic flow is derived from an inviscid 
basis. Using normal-mode analysis, Wilson & Gladwell (1978) and Lye11 & Huerre 
(1985) show that viscous disturbance modes of the inviscid planar stagnation-point 
flow are stable. The work of Hall et al. (1984) shows that the addition of a third velocity 
component of sufficient strength can destabilize the viscous normal modes. This 
suggests that the three-dimensionality considered here might also overcome the 
stabilizing effects of viscosity. 
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Background rotation or strain of the field can only alter the dynamics by forcing the 
system to have temporal oscillations rather than prevent instabilities. Finally, more 
comprehensive material particle-path information could be obtained if one allows the 
velocity field to include the perturbations as well as the basic flow. Pursuit of this 
information will involve three-dimensional coupled nonlinear non-autonomous 
differential equations. 

This work was supported, in part, by the National Aeronautics and Space 
Administration under NASA Contract NAS1-19480 while the authors were in 
residence at the Institute for Computer Applications in Science and Engineering, 
NASA Langley Research Center, Hampton, VA 2368 1. T. L. J. also acknowledges 
support by the AFOSR under contract 91-0180. 

R E F E R E N C E S  
BRATTKUS, K. & DAVIS, S. H. 1991 The linear stability of plane stagnation-point flow against general 

CRIMINALE, W. 0. & DRAZIN, P. G. 1990 The evolution of linearized perturbations of parallel flows. 

DAVEY, A. 1961 Boundary-layer flow at a saddle point of attachment. J.  Fluid Mech. 38, 593-610. 
EADY, E. A. 1949 Long waves and cyclone waves. Tellus 1, 33-52. 
FARRELL, B. F. 1989 Transient development in confluent and diffluent flow. J .  Atmos. Sci. 46, 

HALL, P., MALIK, M. R. & POLL, D. I. A. 1984 On the stability of an infinite swept attachment line 

KAZAKOV, A. V. 1991 Effect of surface temperature on the stability of the swept attachment line 

KELVIN, W. 1887 Rectilinear motion of viscous fluid between two parallel plates. Phil. Mag. 24, 

LASSEIGNE, D. G. & JACKSON, T. L. 1992 Stability of a non-orthogonal stagnation flow to three 

LASSEIGNE, D. G., JACKSON, T. L. & Hu, F. Q. 1992 Temperature and suction effects on the 

LYELL, M. J. & HUERRE, P. 1985 Linear and nonlinear stability of plane stagnation flow. J .  Fluid 

ORR, W. M’F. 1907a The stability or instability of the steady motions of a perfect liquid and a 

ORR, W. M’F. 1907b The stability or instability of the steady motions of a perfect liquid and a 

SPALART, P. R. 1989 Direct numerical study of leading-edge contamination. AGARD Con$ Proc. 

WILSON, S .  D. R. & GLADWELL, I. 1978 The stability of a two-dimensional stagnation flow to three- 

disturbances. Q .  J .  Mech. Appl. M a t h  44, 135-146. 

Stud. Appl. Maths 83, 123-157. 

3279-328 8. 

boundary layer. Proc. R. SOC. Lond. A 395, 229-245. 

boundary layer. Fluid Dyn. 25, 875-878. 

188-196. 

dimensional disturbances. Theor. Comput. Fluid Dyn. 3, 207-218. 

instability of an infinite swept attachment line. Phys. Fluids A 4, 2008-2012. 

Mech. 161, 295-312. 

viscous liquid. Part I. Proc. R. Irish Acad. 27, 9-68. 

viscous liquid. Part 11. Proc. R .  Irish Acad. 27, 69-138. 

438, 5.1-5.13. 

dimensional disturbances. J .  Fluid Mech. 84, 51 7-527. 


